Flowtaxis of osteoblast migration under fluid shear and the effect of RhoA kinase silencing
نویسندگان
چکیده
Despite the important role of mechanical signals in bone remodeling, relatively little is known about how fluid shear affects osteoblastic cell migration behavior. Here we demonstrated that MC3T3-E1 osteoblast migration could be activated by physiologically-relevant levels of fluid shear in a shear stress-dependent manner. Interestingly, shear-sensitive osteoblast migration behavior was prominent only during the initial period after the onset of the steady flow (for about 30 min), exhibiting shear stress-dependent migration speed, displacement, arrest coefficient, and motility coefficient. For example, cell speed at 1 min was 0.28, 0.47, 0.51, and 0.84 μm min-1 for static, 2, 15, and 25 dyne cm-2 shear stress, respectively. Arrest coefficient (measuring how often cells are paused during migration) assessed for the first 30 min was 0.40, 0.26, 0.24, and 0.12 respectively for static, 2, 15, and 25 dyne cm-2. After this initial period, osteoblasts under steady flow showed decreased migration capacity and diminished shear stress dependency. Molecular interference of RhoA kinase (ROCK), a regulator of cytoskeletal tension signaling, was found to increase the shear-sensitive window beyond the initial period. Cells with ROCK-shRNA had increased migration in the flow direction and continued shear sensitivity, resulting in greater root mean square displacement at the end of 120 min of measurement. It is notable that the transient osteoblast migration behavior was in sharp contrast to mesenchymal stem cells that exhibited sustained shear sensitivity (as we recently reported, J. R. Soc. Interface. 2015; 12:20141351). The study of fluid shear as a driving force for cell migration, i.e., "flowtaxis", and investigation of molecular mechanosensors governing such behavior (e.g., ROCK as tested in this study) may provide new and improved insights into the fundamental understanding of cell migration-based homeostasis.
منابع مشابه
Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors.
The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morph...
متن کاملFluid Flow-Induced Mesenchymal Stem Cell Migration: Role of FAK and ROCK Mechanosensors
The study of mesenchymal stem cell (MSC) migration under mechanical stimulation conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcomes in stem cell-based regenerative medicine. MSCs having multipotent regenerative capability exist in niches in the bone marrow, muscle, vasculature, and in other tissues throughout the body, and their ...
متن کاملm-Calpain antagonizes RhoA overactivation and endothelial barrier dysfunction under disturbed shear conditions.
AIMS It has been reported that laminar shear flow (LF) improves barrier functions in vascular endothelial cells (ECs), whereas disturbed flow (DF) impairs the barrier. Our previous study showed that LF stimulus led to the activation of the cysteine protease, m-calpain, in ECs, which can influence RhoA activity. We hypothesized that m-calpain participates in the shear pattern-dependent EC barrie...
متن کاملP2Y2 receptors regulate osteoblast mechanosensitivity during fluid flow.
Mechanical stimulation of osteoblasts activates many cellular mechanisms including the release of ATP. Binding of ATP to purinergic receptors is key to load-induced osteogenesis. Osteoblasts also respond to fluid shear stress (FSS) with increased actin stress fiber formation (ASFF) that we postulate is in response to activation of the P2Y2 receptor (P2Y2R). Furthermore, we predict that ASFF inc...
متن کاملO-GlcNAcylation promotes migration and invasion in human ovarian cancer cells via the RhoA/ROCK/MLC pathway
O-GlcNAcylation is a dynamic and reversible post-translational modification associated with the regulation of multiple cellular functions. The addition and removal of O‑Linked β-N-acetylglucosamine (O‑GlcNAc) on target proteins is catalyzed by O‑GlcNAc transferase (OGT) and O‑GlcNAcase (OGA), respectively. Accumulating evidence suggests that O-GlcNAcylation is associated with the malignancy of ...
متن کامل